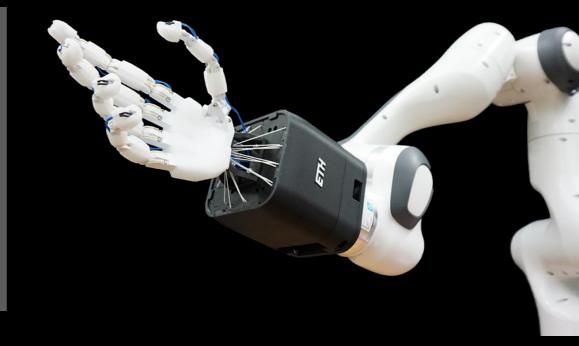


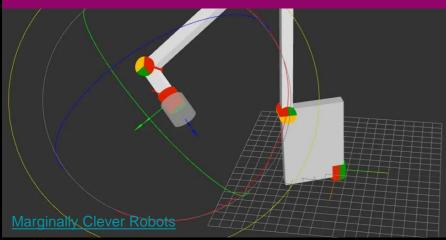
Kinematics, Dynamics and Control of Robotic Hands

Robert Katzschmann

Assistant Professor of Robotics, Soft Robotics Lab

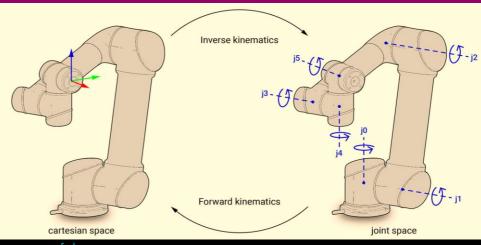


Focus Topics for Today



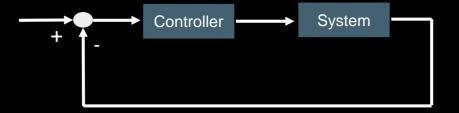
3. Kinematics and Dynamics for

2. Forward and Inverse Kinematics

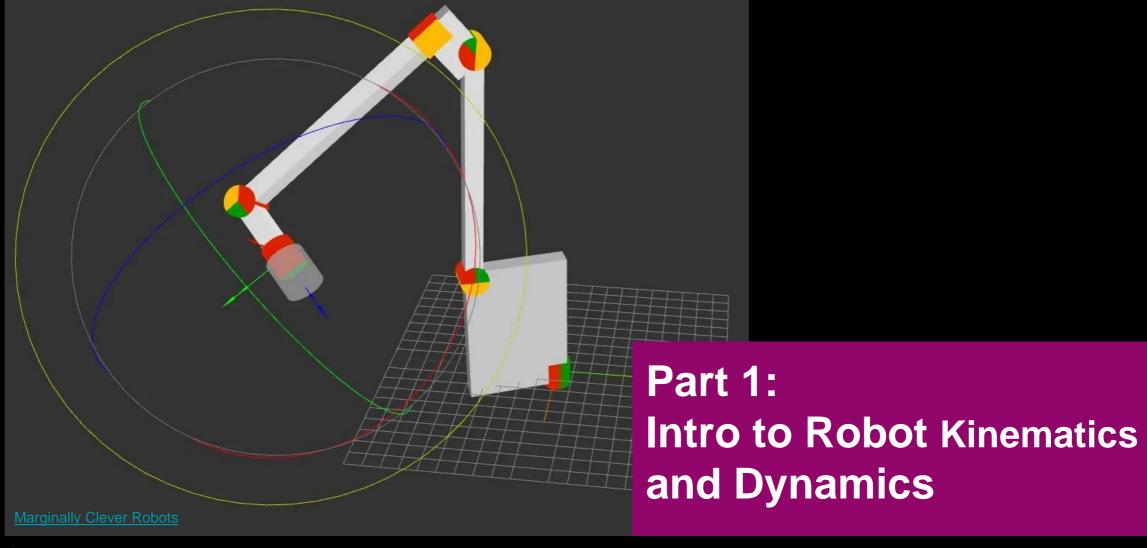


compas fab

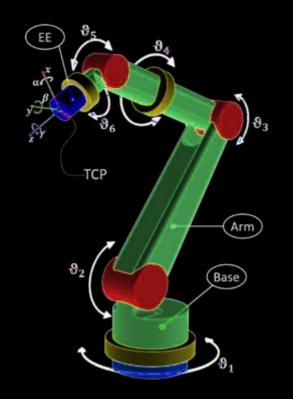
4. Control

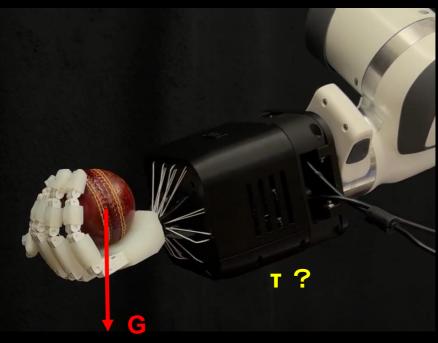


5. Challenges



Robot Kinematics and Dynamics





Toshimitsu et al. (2023) https://srl-ethz.github.io/get-ball-rolling/

researchgate.net

Kinematics

Dynamics

Simulation

reaction to certain actuator commands

Control

invert of simulation, want to get somewhere, what to command?

Design

how are the loads distributed?

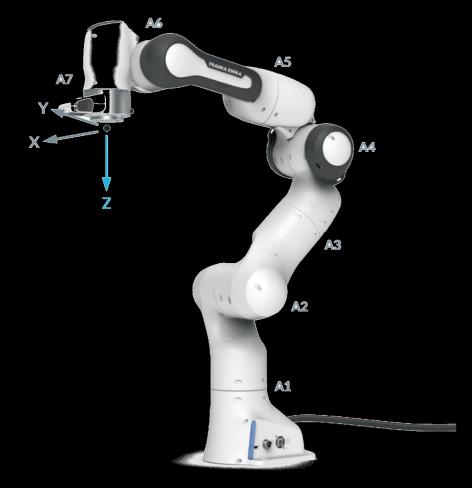
Optimization

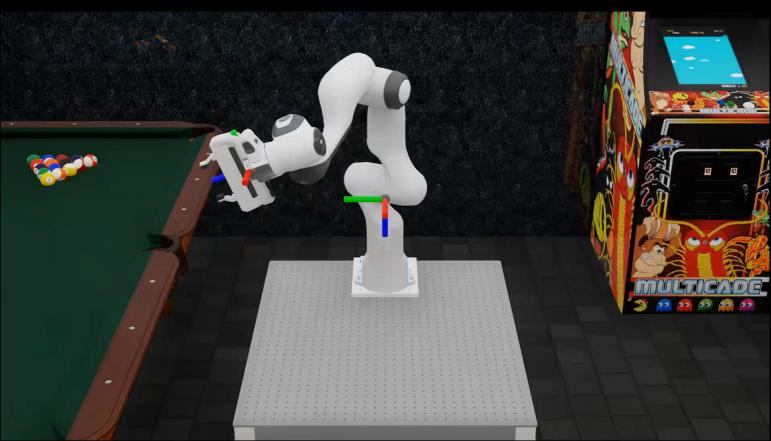
what dimension should I have?

Actuation

torque, speed, powder etc.

Robotic Arm

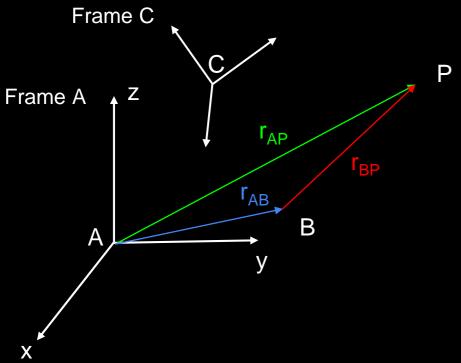




Videos from Orbit

franka.de

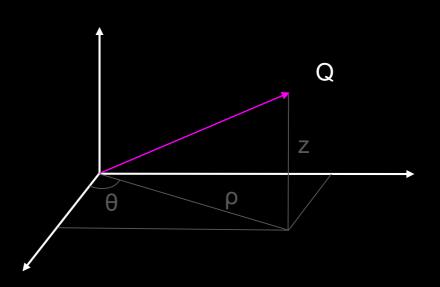
Points, Lines, and Coordinates



Point P in Cartesian Coordinates Frame A:
$$_{A}X_{P} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

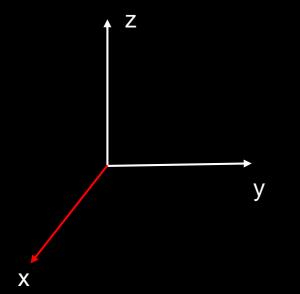
$$A_{AP} = A_{AB} + A_{BP}$$

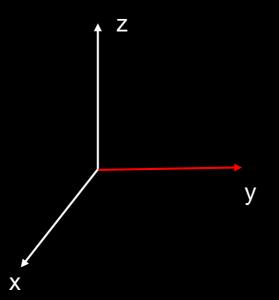
 $A_{AP} \neq A_{AB} + C_{BP}$

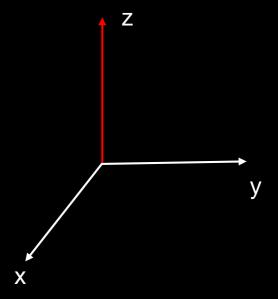


Point Q in Cylindrical Coordinate:
$$X_Q = \begin{pmatrix} \rho \\ \theta \\ z \end{pmatrix}$$

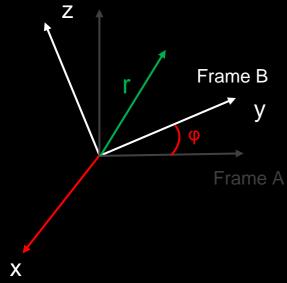
Rotation



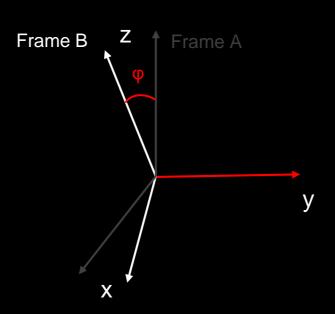




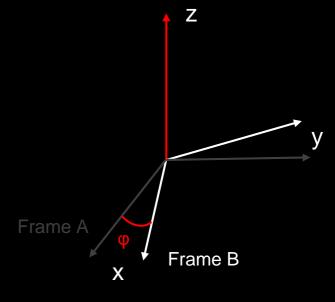
Rotation



$$C_{x}(\varphi) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\varphi & -\sin\varphi \\ 0 & \sin\varphi & \cos\varphi \end{bmatrix} \qquad C_{y}(\varphi) = \begin{bmatrix} \cos\varphi & 0 & \sin\varphi \\ 0 & 1 & 0 \\ -\sin\varphi & 0 & \cos\varphi \end{bmatrix} \qquad C_{z}(\varphi) = \begin{bmatrix} \cos\varphi & -\sin\varphi \\ \sin\varphi & \cos\varphi \\ 0 & 0 \end{bmatrix}$$



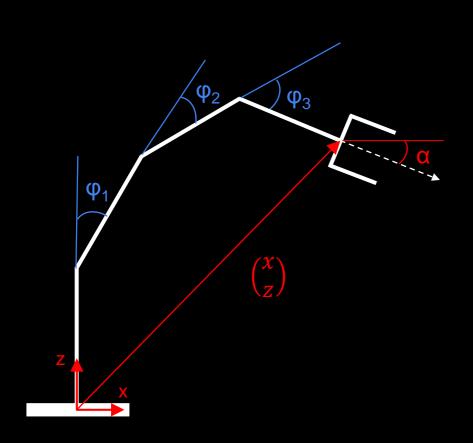
$$C_y(\varphi) = egin{bmatrix} cos \varphi & 0 & sin arphi \ 0 & 1 & 0 \ -sin arphi & 0 & cos arphi \end{bmatrix}$$

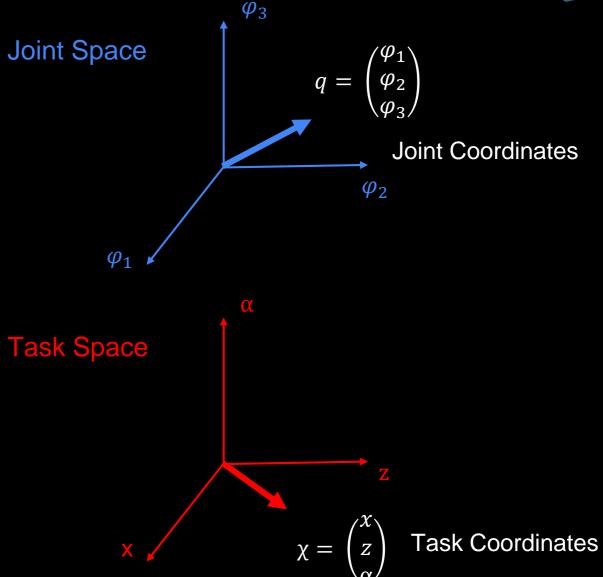


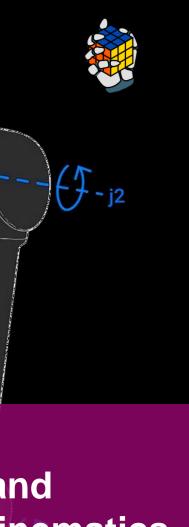
$$C_z(\varphi) = \begin{bmatrix} \cos\varphi & -\sin\varphi & 0 \\ \sin\varphi & \cos\varphi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

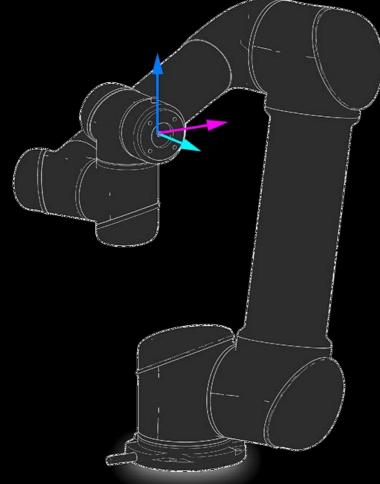
$$_{A}\mathbf{r} = \mathbf{C}_{AB} \cdot _{B}\mathbf{r} \rightarrow \begin{pmatrix} _{A}^{\mathcal{X}} \\ _{A}^{\mathcal{Y}} \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\varphi & -\sin\varphi \\ 0 & \sin\varphi & \cos\varphi \end{bmatrix} \begin{pmatrix} _{B}^{\mathcal{X}} \\ _{B}^{\mathcal{Y}} \end{pmatrix} = \begin{pmatrix} _{B}^{\mathcal{X}} \mathbf{y} \cdot \cos\varphi - _{B}^{\mathcal{X}} \mathbf{z} \cdot \sin\varphi \\ _{B}^{\mathcal{Y}} \mathbf{y} \cdot \sin\varphi + _{B}^{\mathcal{X}} \mathbf{z} \cdot \cos\varphi \end{pmatrix}$$

Joint Space and Task Space









Cartesian space

j3- ()

Forward kinematics

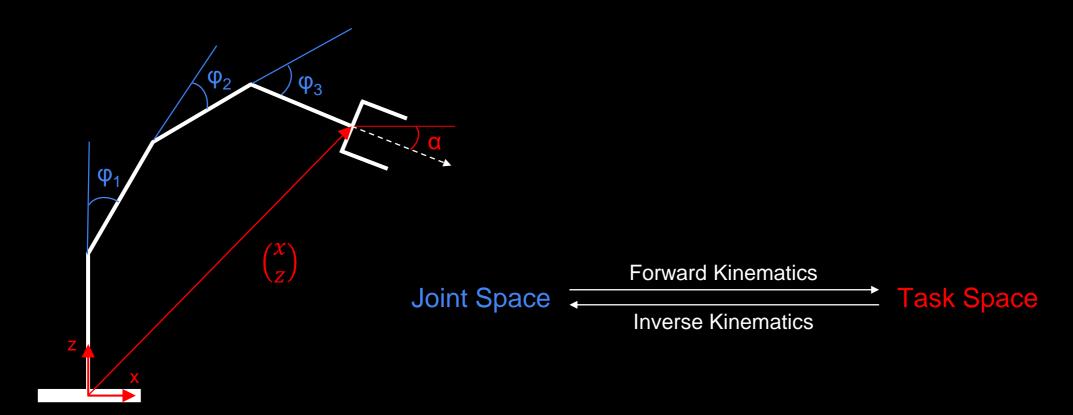
Part 2: Forward and

Joint space

Inverse Kinematics

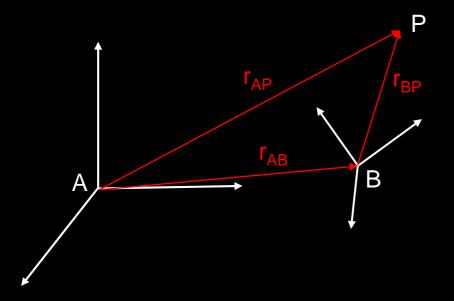
compas_fab

Forward and Inverse Kinematics



From greek *kinema* = motion

Homogeneous Transformation Matrix



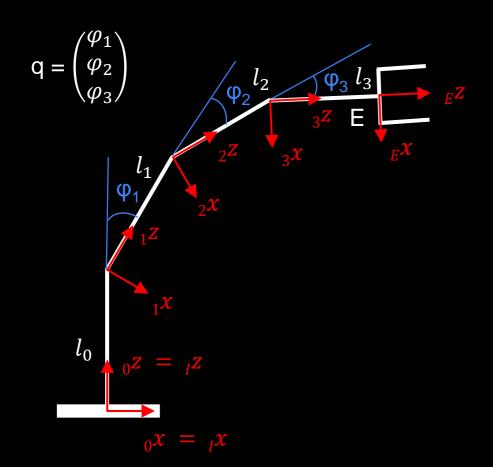
$$r_{AP} = r_{AB} + r_{BP}$$

$$Ar_{AP} = Ar_{AB} + Ar_{BP} = Ar_{AB} + C_{AB} \cdot Br_{BP}$$

$$\begin{pmatrix} A^{r}_{AP} \\ 1 \end{pmatrix} = \begin{bmatrix} C_{AB} & A^{r}_{AB} \\ 0_{1x3} & 1 \end{bmatrix} \begin{pmatrix} B^{r}_{BP} \\ 1 \end{pmatrix}$$

$$T_{AB}$$

Homogeneous Transformation Matrix



$$T_{IE} = TI_0 \cdot T_{01} \cdot T_{12} \cdot T_{23} \cdot T_{3E}$$

Homogeneous Transformation Matrix

$$\mathbf{q} = \begin{pmatrix} \varphi_1 \\ \varphi_2 \\ \varphi_3 \end{pmatrix} \qquad \qquad \mathbf{p} = \mathbf{q} = \mathbf{q} \quad \mathbf{q}$$

Forward Differential Kinematics and Jacobian

$$\delta X_E \approx \frac{\delta X_E(q)}{\delta q} \delta q = J_{EA}(q) \delta q \qquad \text{with } J_{EA} = \frac{\delta X_E}{\delta q} = \begin{bmatrix} \frac{\delta X_1}{\delta q_1} & \cdots & \frac{\delta X_1}{\delta q_n} \\ \vdots & \ddots & \vdots \\ \frac{\delta X_m}{\delta q_1} & \cdots & \frac{\delta X_m}{\delta q_n} \end{bmatrix}$$

$$\dot{X}_E = J_{EA}(q)\dot{q}$$
 with $J_{EA}(q) \in \mathbb{R}^{m \times n}$

with
$$J_{EA}(q) \in \mathbb{R}^{m \times n}$$

Inverse Kinematics

Previously we showed that:

$$J(q)\dot{q} \,=\, \chi_e \,= egin{bmatrix} \dot{p}_e \ w_e \end{bmatrix}$$

If we invert it we obtain:

$$\dot{q}\,=\,J^+\chi_e\, ext{with}\,\mathrm{J}^+\,=\,J^T(JJ^T)^{\,-1}$$

And in a differential form:

$$\Delta\chi_e\,=\,J^+\Delta q$$

Algorithm 1 Numerical Inverse Kinematics

1:
$$\mathbf{q} \leftarrow \mathbf{q}^0$$
 \triangleright Start configuration
2: **while** $\|\boldsymbol{\chi}_e^* - \boldsymbol{\chi}_e\left(\mathbf{q}\right)\| > tol \, \mathbf{do}$ \triangleright While the solution is not reached
3: $\mathbf{J}_{eA} \leftarrow \mathbf{J}_{eA} (\mathbf{q}) = \frac{\partial \boldsymbol{\chi}_e}{\partial \mathbf{q}} (\mathbf{q})$ \triangleright Evaluate Jacobian for \mathbf{q}
4: $\mathbf{J}_{eA}^+ \leftarrow (\mathbf{J}_{eA})^+$ \triangleright Calculate the pseudo inverse
5: $\Delta \boldsymbol{\chi}_e \leftarrow \boldsymbol{\chi}_e^* - \boldsymbol{\chi}_e (\mathbf{q})$ \triangleright Find the end-effector configuration error vector
6: $\mathbf{q} \leftarrow \mathbf{q} + \mathbf{J}_{eA}^+ \Delta \boldsymbol{\chi}_e$ \triangleright Update the generalized coordinates
7: **end while**

A possible inverse kinematics algorithm

Robot Dynamics Class @ ETH Zurich

To overcome stability issues, the update can be scaled by a factor k

-> slower convergence

$$q \leftarrow q \, + \, k J_{eA}^+ \Delta \chi_e ext{ with } k \in (0,1)$$

Inverse Kinematics



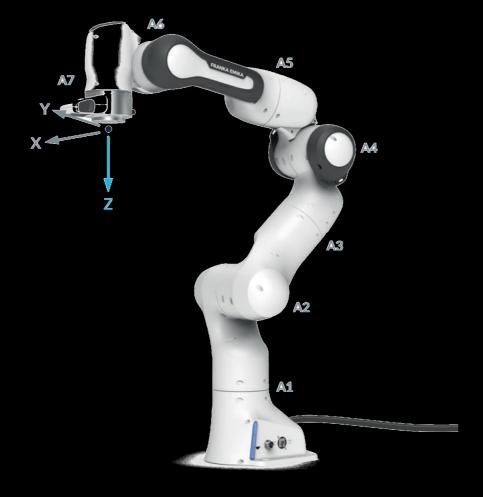
https://thehumanoid.ai/

TH zürich



Part 3: Kinematics and Dynamics for Hand Joints

Difference Between Conventional Robots and Robotic Hands



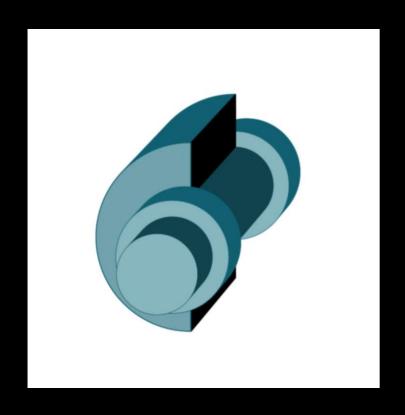
<u>franka.de</u> <u>abb.com</u>

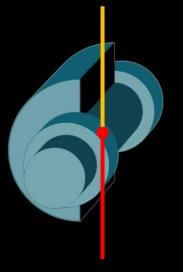
Recap: Different Types of Joints

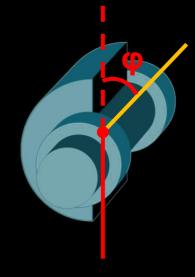
SOFT ROBOTICS - JOINT TYPES PIN **FLEXURE SYNOVIAL ROLLING CONTACT**

Pin Joint

What the ORCA Hand uses

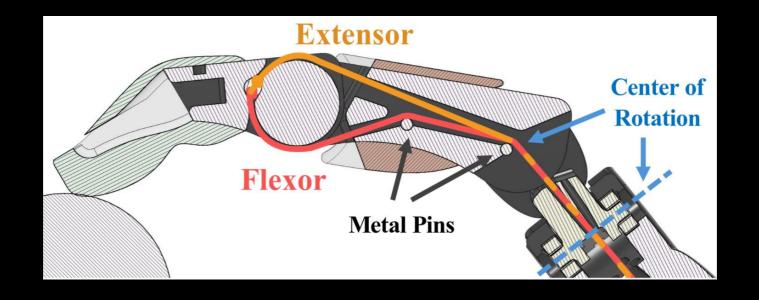




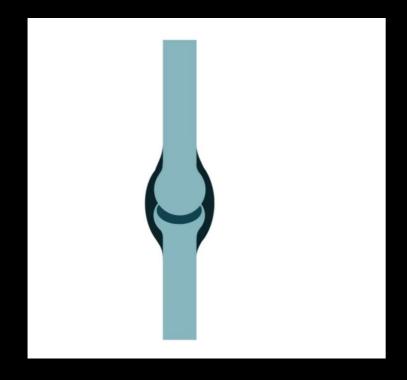


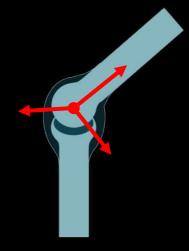
Pin Joint

What the ORCA Hand uses

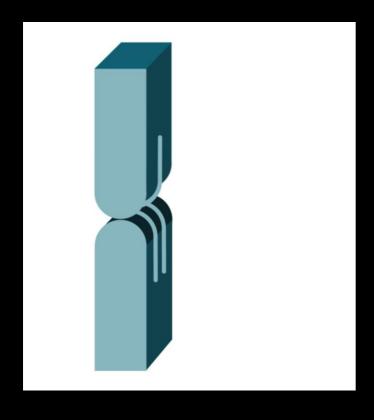


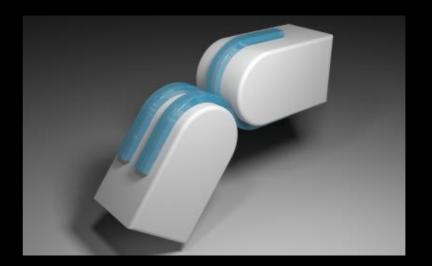
Synovial Joint

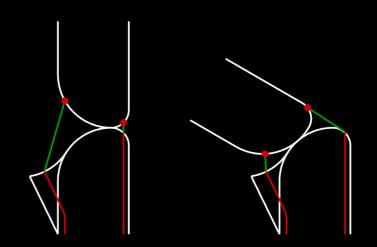




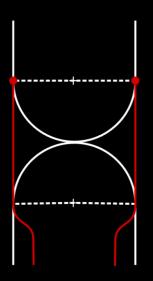
Rolling Contact Joint — Joints Used on Faive Hand

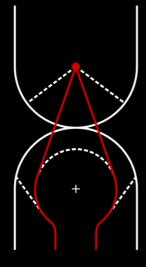


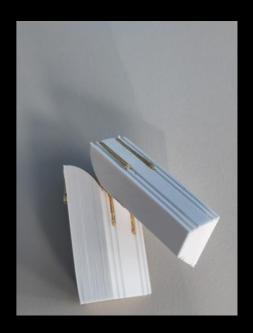




Kinematics for Rolling Contact Joint



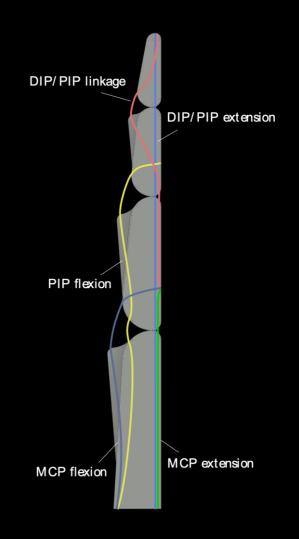






Dynamics – Jacobian

$$J_{m} = \begin{bmatrix} \frac{\partial p_{1}}{\partial q_{1}} & \frac{\partial p_{1}}{\partial q_{2}} \\ \frac{\partial p_{2}}{\partial q_{1}} & \frac{\partial p_{2}}{\partial q_{2}} \end{bmatrix}$$



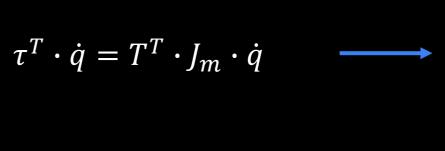
 $au = J_m^T \cdot T$

$$\dot{p} = J_m \cdot \dot{q}$$

Velocity of the motors

$$\tau^T \cdot \dot{q} = T^T \cdot \dot{p}$$

Conservation of Power



Previous slide: $\tau = J_m^T \cdot T$

$$\dot{X}_{fingertip} = J_{fingertip} \cdot \dot{q}$$

$$\tau^T \cdot \dot{q} = F_{fingertip}^T \cdot \dot{X}_{fingertip}$$

$$m{ au}^T \cdot \dot{q} = F_{fingertip}^T \cdot J_{fingertip} \cdot \dot{q}$$

$$\tau = J_{fingertip}^{T} \cdot F_{fingertip}$$

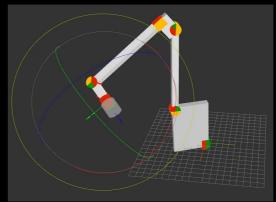
$$\tau = {J_m}^T \cdot T$$

$$\tau = {J_{fingertip}}^T \cdot F_{fingertip}$$

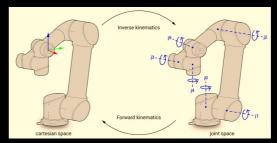
$$T = {(J_m}^T)^{-1} \cdot J_{fingertip}^T \cdot F_{fingertip}$$

Summary of Kinematics and Dynamics

- Intro to Robot Kinematics and Dynamics
 - Representing points and lines in different coordinates and frames
 - Rotational matrix
 - Joint space and task space
- Forward and Inverse Kinematics
 - Homogeneous transformation matrix
 - Forward differential kinematics and Jacobian
 - Inverse kinematics
- Kinematics and Dynamics for hand joints
 - Hand Joints
 - Kinematics for rolling joints
 - Dynamics for rolling joints

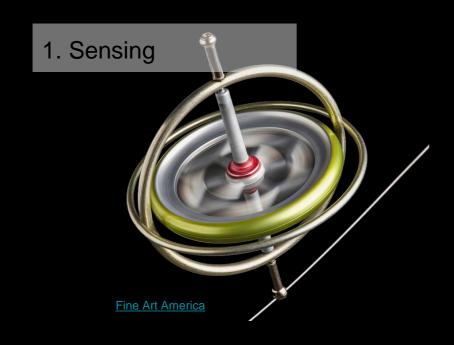


Marginally Clever Robots



compas_fab

Implementing Control Strategies for Manipulation!



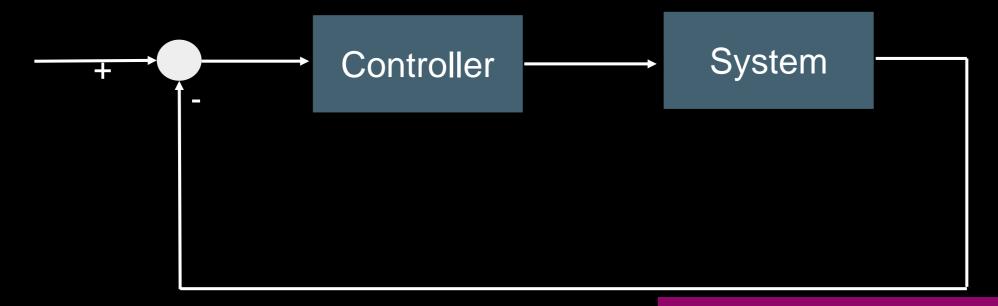
2. Control

Wikimedia

Controller

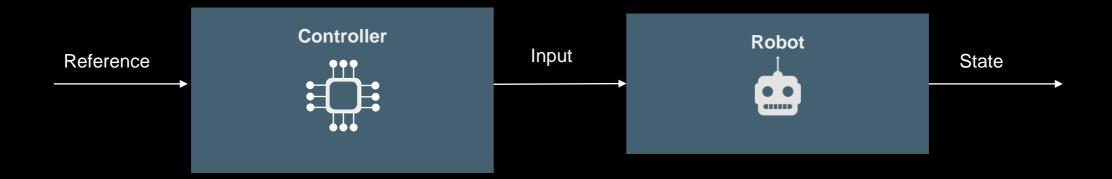
System

Next Week

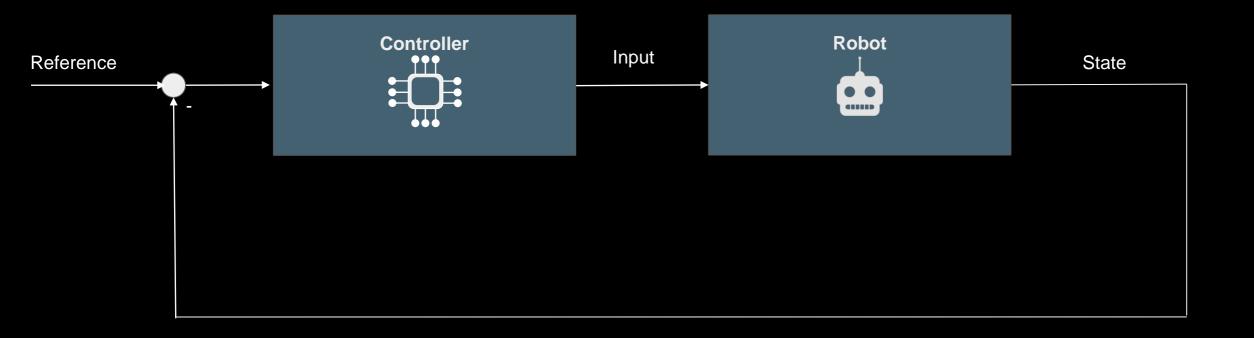


Part 4a: Feedback Control

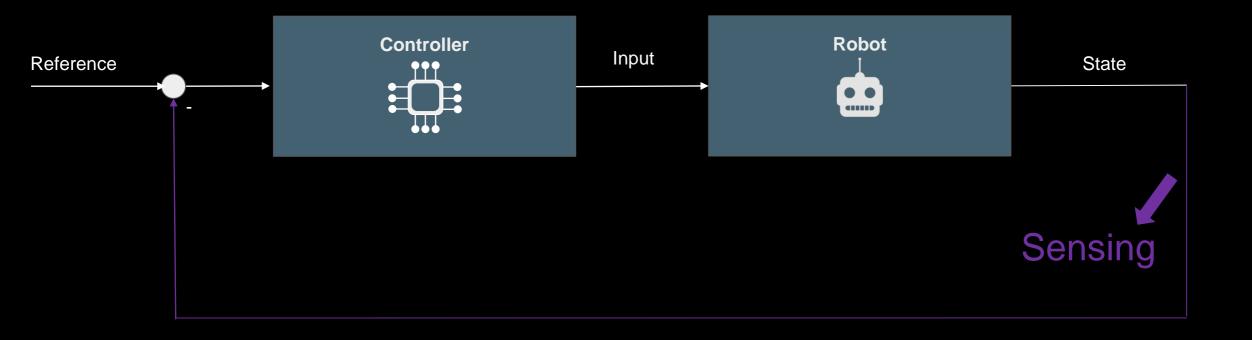
Simplest controller possible: Open loop



Closed Loop Controller



Closed Loop Controller

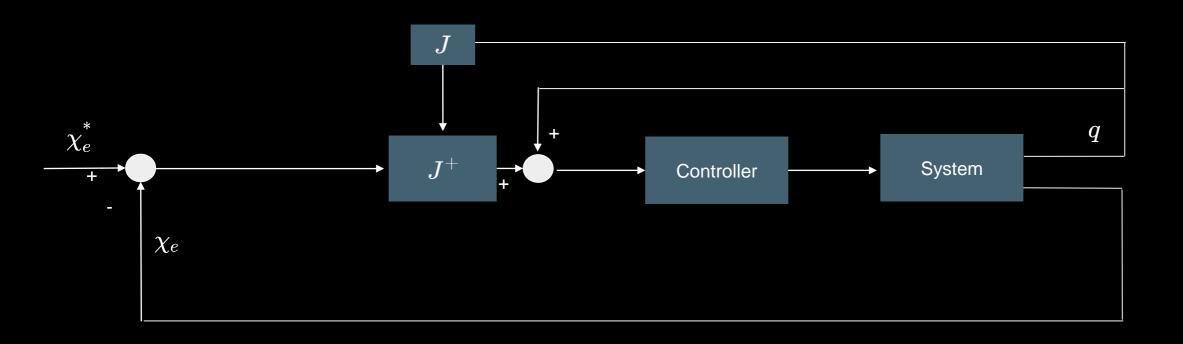


Remember - Inverse Kinematics

Numerical Inverse Kinematics (iterative approach):

$$q \leftarrow q \, + \, k J_{eA}^+ \Delta \chi_e \, ext{with} \, k \in (0,1)$$

Inverse Kinematics Control



Trajectory Control

We can use a closed loop controller, but we need to add a component for the desired velocities

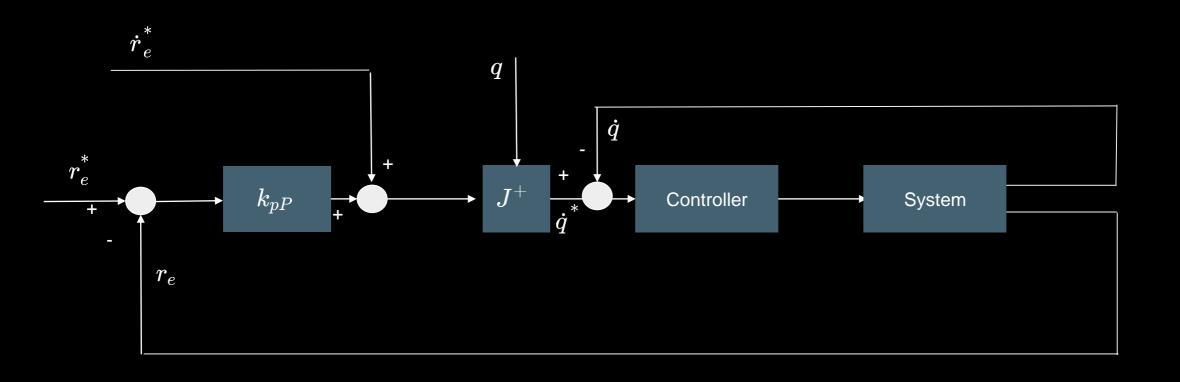
We define
$$\Delta r_e^t = r_e^*(t) - r_e(q^t)$$

And the desired joint velocity
$$\left|\dot{q}^*
ight|=J_{e0_P}^+(q^t)\cdot\left(\dot{r}_e^*(t)+k_{pP}\Delta r_e^t
ight)$$

If we have a desired rotation rate we write
$$ec{q}^*=J_{e0_R}^+(q^t)\cdot(\omega_e^*(t)+k_{pR}\Delta\phi$$
)

Where ϕ are the angles used to represent the orientation of the end effector.

Trajectory Control



Dynamic control

The dynamic model is

$$M(q)\ddot{q} + b(q,\dot{q}) + g(q) = au + J_c(q)^T F_c$$

With:

M(q): Generalized mass matrix

 q, \dot{q}, \ddot{q} : Generalized position, velocity and acceleration vector

 $b(q,\dot{q})$: Coriolis and centrifugal terms

g(q): Gravitational terms

au: External generalized forces

 F_c : External Cartesian forces

 $J_c(q)$: Geometric Jacobian corresponding to the external forces

Dynamic control

The dynamic model is

$$M(q)\ddot{q} + b(q,\dot{q}) + g(q) = au + J_c(q)^T F_c$$

If we know the desired generalized accelerations, velocities and poses we can write

$$|\ddot{q}^*| = k_p(q^* - q) + k_d(\dot{q}^* - \dot{q})$$

Thus the joint torques will be

$$oxed{ au^*} = M(q) \ddot{q}^* + b(q,\dot{q}) + g(q)$$

Task-space control

Remember that
$$\;J(q)\dot{q}\;=\;\chi_e\;=egin{bmatrix}\dot{p}_e\w_e\end{bmatrix}$$

If you derive that with respect to time: $\;\dot{\chi}_e \,=\, J(q)\ddot{q}\;+\;\dot{J}(q)\dot{q}\;$

And if we solve the dynamics equation for the joint acceleration and substitute in the equation above we get:

$$\dot{\chi}_e = J M^{-1} (au - b - g) + \dot{J}\,\dot{q}$$

Finally, remembering that $~ au=J_e^TF_e^{-1}$

We can write
$$\Lambda_e \dot{\chi}_e + \mu + p = F_e$$

$$egin{aligned} \Lambda_e &= (J_e M^{-1} J_e^T)^{-1} \ \mu &= \Lambda_e J_e M^{-1} b - \Lambda_e \dot{J}_e \dot{q} \ p &= \Lambda_e J_e M^{-1} g \end{aligned}$$

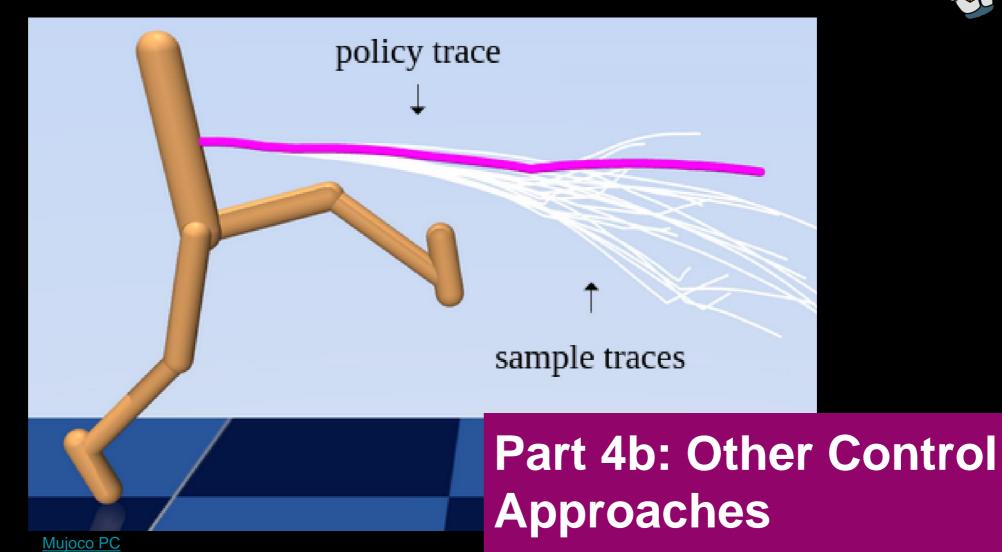
Task-space control

Defining the dynamics uniquely depending on the state of the end effector allows us to design a control loop

$$egin{aligned} \dot{\chi}_e^* = egin{pmatrix} r_e^* - r_e \ \Delta \phi_e \end{pmatrix} + k_d (\chi_e^* - \chi_e) \end{aligned}$$

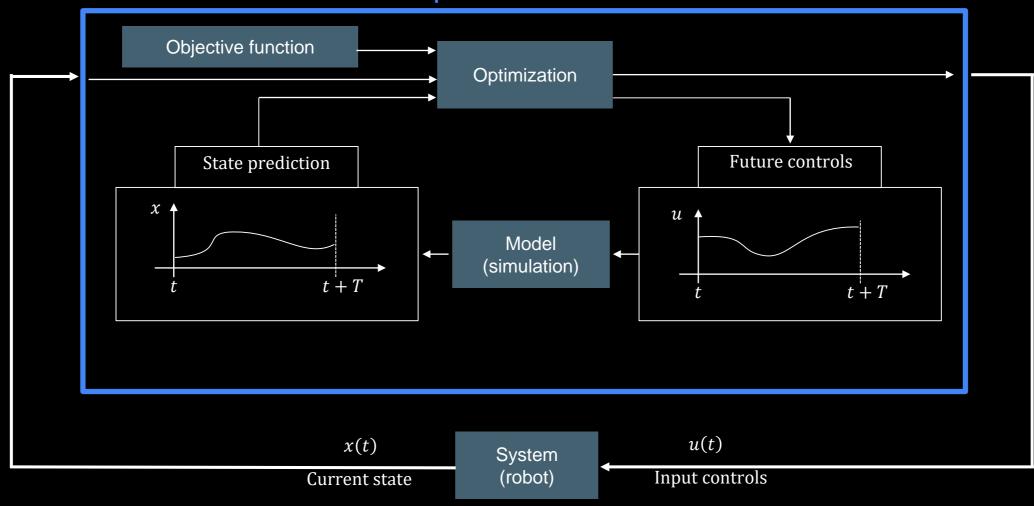
Trajectory/Task space control → **PID Control**

- Idea: Compare desired vs actual output → compute error → apply correction (Proportional, Integral, Derivative).
- Strengths: Simple, cheap, widely used, doesn't require a full model.
- Weaknesses: Limited with nonlinear or high-dimensional systems; needs tuning; not predictive.

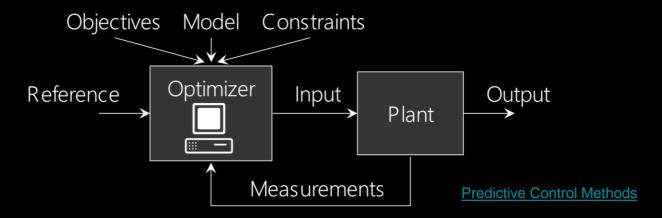


Model predictive control

Model predictive controller

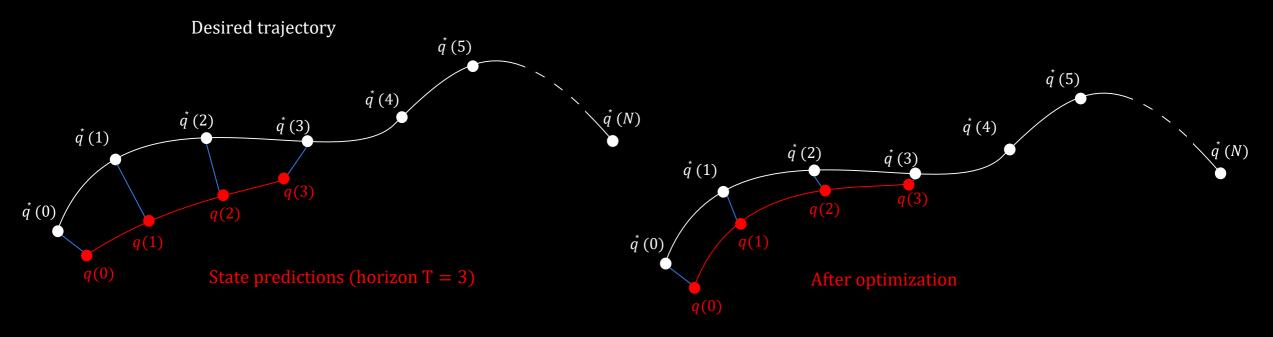


Model Predictive Control (MPC)



- Idea: Dynamics model to predict future states over a horizon → optimize control inputs to minimize a cost.
- Strengths: Handles constraints, anticipates the future.
- Weaknesses: Computationally expensive, requires an accurate model (sim-to-real gap).

Trajectory following with MPC



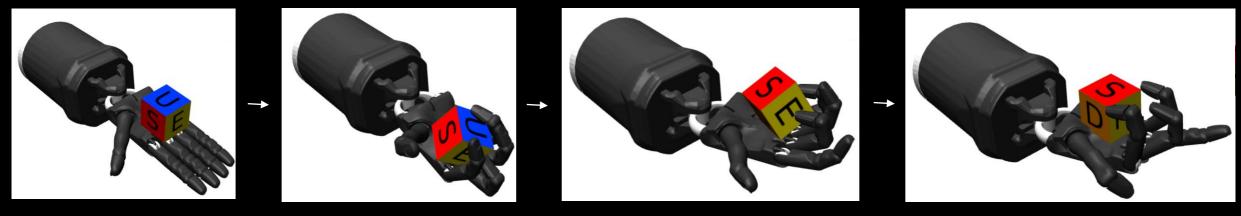
Objective
$$J = \sum_{t=0}^{T} c(t)$$

where each step cost $c(t) = ||q^*(t) - q(t)||_2$

Cube reorientation with MPC

Goal orientation:

Howell et al. 2022, "Predictive Sampling: Real-time Behaviour Synthesis with MuJoCo"



System state x(t) includes robot state q(t), but also the object state.

Objective
$$J = \sum_{t=0}^{T} c(t)$$

where $c(t) = ||cube\ orientation\ (t) - goal\ orientation||_2 + ||cube\ position\ (t) - palm\ center||_2$

Reinforcement Learning (RL) – Overview

Idea: Learn a policy (state → action mapping) by maximizing long-term reward through interaction.

Key characteristics:

- No explicit model required (model-free RL).
- Works with nonlinear, high-dimensional dynamics.

Strengths:

- Captures "intelligent" behaviors.
- Generalizes beyond what is explicitly modeled.

Weaknesses:

- \circ Data hungry \rightarrow needs simulation or many real-world trials (hard and expensive).
- Transfer from sim to real can be hard (sim-to-real gap).

RL will be covered in two weeks.

Feedback control MPC

Feedback control

• Computationally cheap.

MPC

• Expensive.

Feedback control

Computationally cheap.

• Reacts to immediate residual.

MPC

• Expensive.

Longer horizon. But still myopic after horizon T.

Feedback control

- Computationally cheap.
- Reacts to immediate residual.

• Doesn't require a model.

MPC

- Expensive.
- Longer horizon. But still myopic after horizon T.
- Requires a computational model.
 - Sim2Real gap.

Feedback control

- Computationally cheap.
- Reacts to immediate residual.

- Doesn't require a model.
- Limited to regulation/tracking.

MPC

- Expensive.
- Longer horizon. But still myopic after horizon *T*.
- Requires a computational model.
 - Sim2Real gap.
- Can encode higher-level tasks.

MPC

Reinforcement Learning

MPC

No offline training.

Reinforcement Learning

• Offline training needed.

MPC

No offline training.

Requires a model.

Reinforcement Learning

• Offline training needed.

Does not require a model.

MPC

No offline training.

Requires a model.

• Limited to our state representations.

Reinforcement Learning

• Offline training needed.

• Does not require a model.

 Can discover latent representations, and "intelligent" behavior.

MPC

- No offline training.
- Requires a model.
- Limited to our state representations.

Slower during execution.

Reinforcement Learning

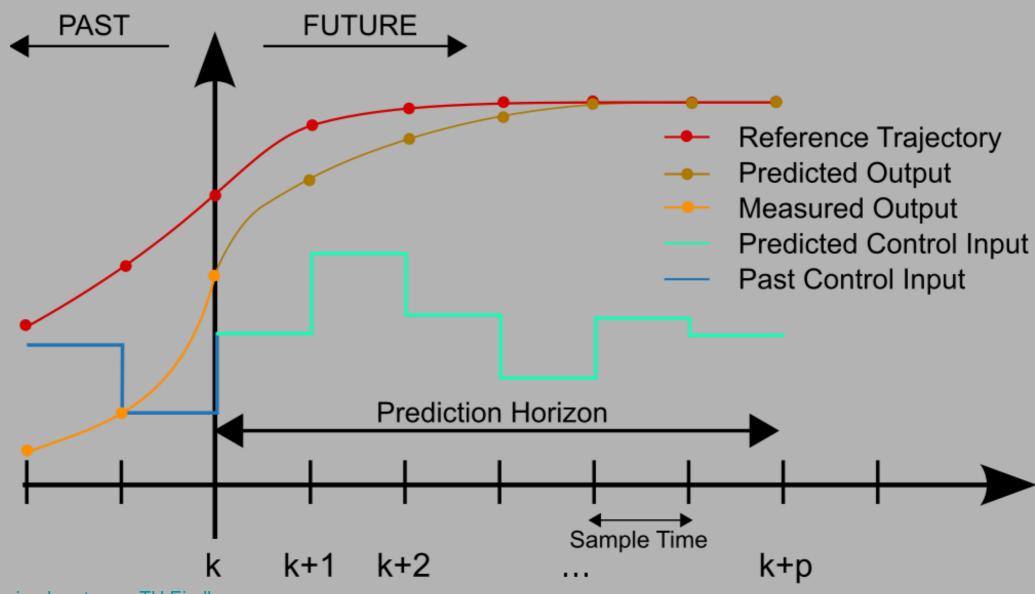
- Offline training needed.
- Does not require a model.
- Can discover latent representations, and "intelligent" behavior.
- Learns a policy, a direct mapping from state to action.

What should you expect?

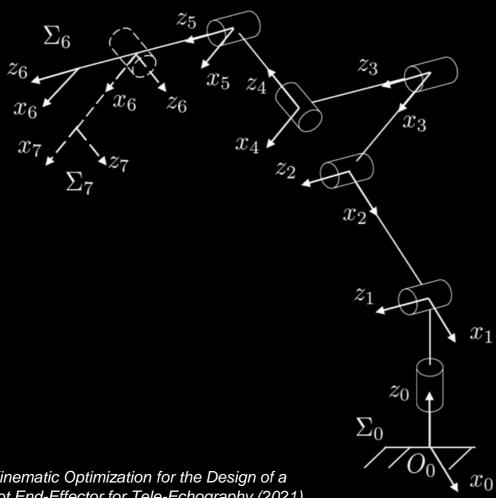
- Uncertainty and Partial Observability
- Long Horizon
- Under/Over actuation
- Sim-to-real gap
- Tendon strain + skin non-linearity
- Encoder's sensibility

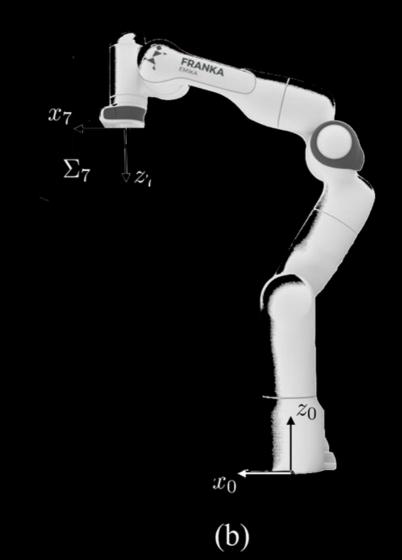
Uncertainty and Partial Observability

Long Horizon



Underactuation and Overactuation

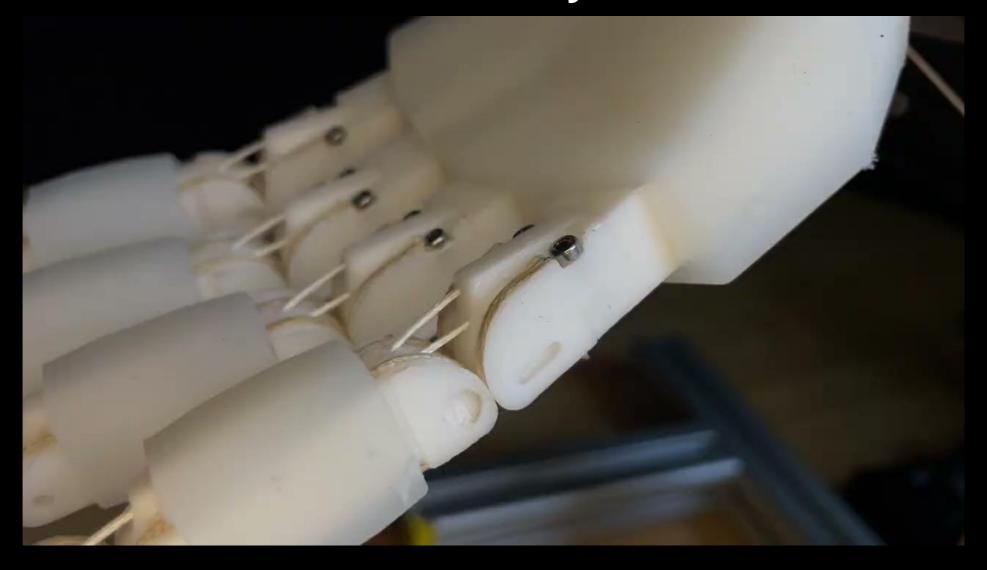




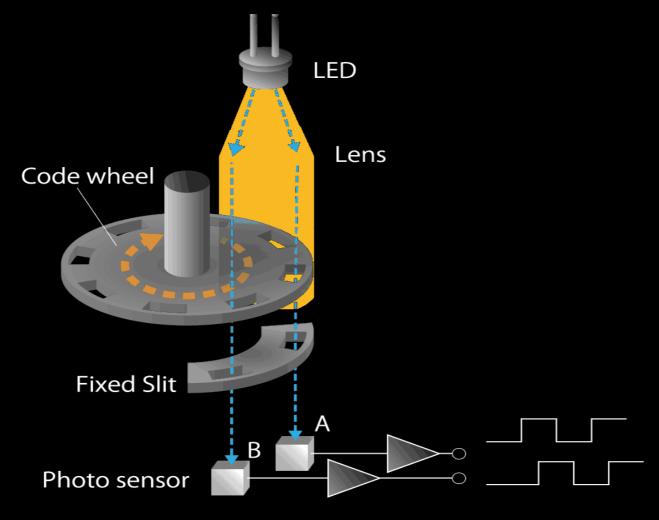
Filippeschi et al. Kinematic Optimization for the Design of a Collaborative Robot End-Effector for Tele-Echography (2021)

Sim-to-real gap

Tendon strain + skin non-linearity



Encoder's sensibility



Asahi Kasei Microdevices

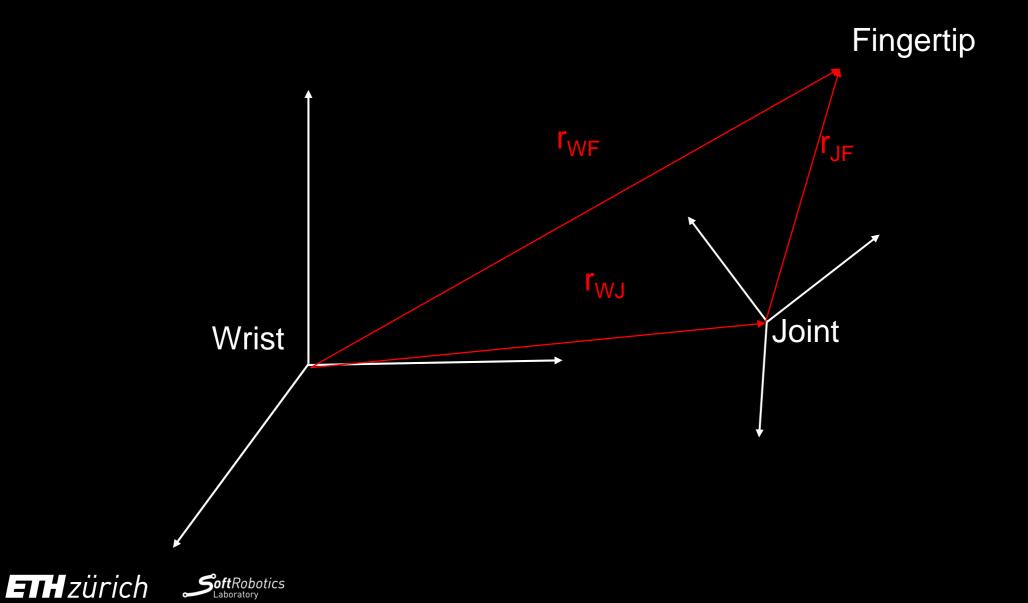
Backup Slides

Sensing the pose: two methods

- Direct methods: Direct reference to the world reference frame
 - The sensors obtain the absolute value of the state we are measuring

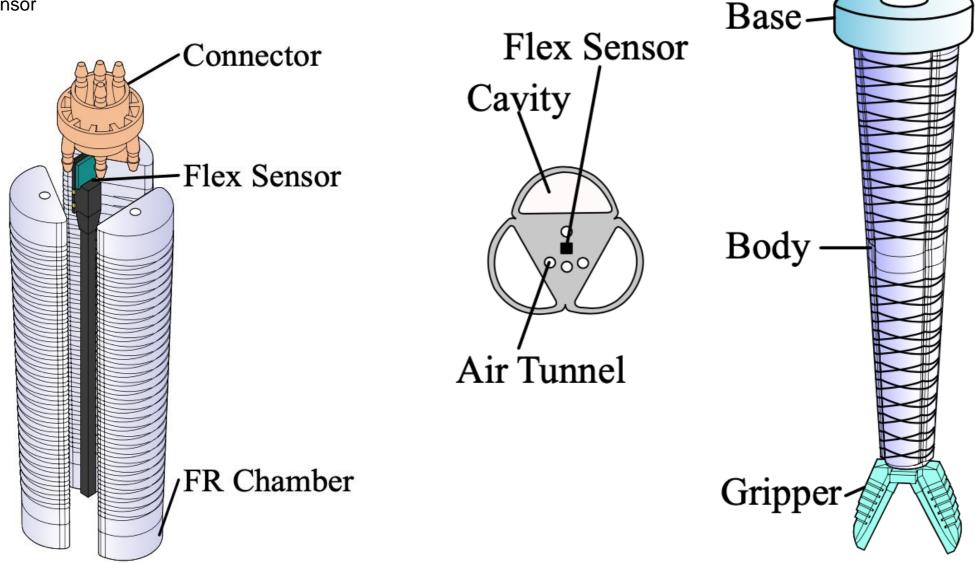
- Indirect methods: Obtain a measurement with reference to a second frame
 - The sensors will estimate a relative measurement that can be transformed into an absolute measurement

Second solution

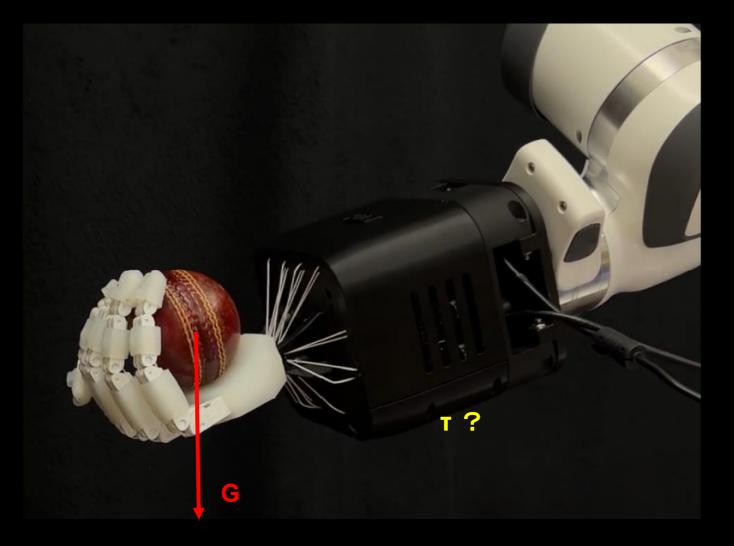


Indirect methods

e.g., Built-in Flex Sensor



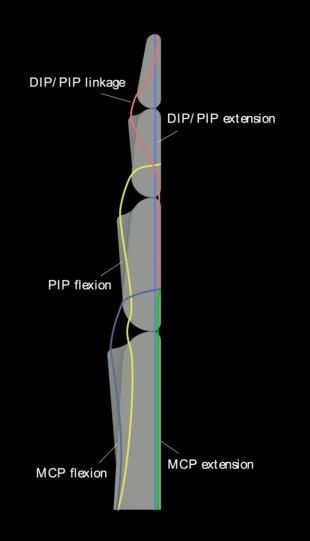
Toshimitsu, Y., Wong, K. W., Buchner, T., & Katzschmann, R. (2021, September). Sopra: Fabrication & dynamical modeling of a scalable soft continuum robotic arm with integrated proprioceptive sensing. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 653-660). IEEE.



Tendon
Lengths
$$p = g(l) = g(f(q)) = F(q)$$

$$\uparrow \qquad \qquad \uparrow$$
Motor
$$\downarrow \qquad \qquad \uparrow$$
Motor
$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
Positions
$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
Angles

$$J_{m} = \begin{bmatrix} \frac{\partial p_{1}}{\partial q_{1}} & \frac{\partial p_{1}}{\partial q_{2}} \\ \frac{\partial p_{2}}{\partial q_{1}} & \frac{\partial p_{2}}{\partial q_{2}} \end{bmatrix}$$



$$\dot{p}=J_m\cdot\dot{q}$$

Velocity of the motors

$$\tau^T \cdot \dot{q} = T^T \cdot \dot{p}$$

Conservation of Power

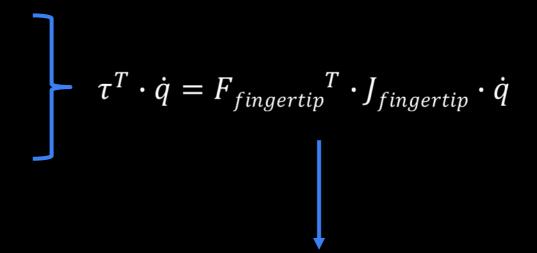
$$\tau^T \cdot \dot{q} = T^T \cdot J_m \cdot \dot{q} \qquad \longrightarrow \qquad \tau = J_m^T \cdot T$$

$$\tau = J_m' \cdot T$$

Previous slide: $\tau = J_m^T \cdot T$

$$\dot{X}_{fingertip} = J_{fingertip} \cdot \dot{q}$$

$$\tau^T \cdot \dot{q} = F_{fingertip}^T \cdot \dot{X}_{fingertip}$$



$$\tau = J_{fingertip}^{T} \cdot F_{fingertip}$$

$$\tau = {J_m}^T \cdot T$$

$$\tau = {J_{fingertip}}^T \cdot F_{fingertip}$$

$$T = {(J_m}^T)^{-1} \cdot J_{fingertip}^T \cdot F_{fingertip}$$

Outro no slide

Useful links

https://link.springer.com/book/10.1007/978-3-319-54413-7

https://smartlabai.medium.com/a-brief-overview-of-imitation-learning-8a8a75c44a9c

https://underactuated.csail.mit.edu/index.html

https://www.kalmanfilter.net/default.aspx

